IL CONTESTO
La disattivazione nel maggio 2000 della S/A (Selective Availability) da parte del governo degli Stati Uniti ha determinato un significativo cambiamento nelle problematiche connesse alla localizzazione di veicoli mobili mediante il GPS. Infatti, con la S/A ancora attiva, per il posizionamento assoluto di un veicolo in movimento con la precisione richiesta (entro qualche metro di errore) era necessario ricorrere a tecniche GPS cinematiche differenziali, utilizzando una coppia di ricevitori del quali il primo sul veicolo mobile, il secondo su una stazione fissa (ad esempio una SP che potesse trasmettere al ricevitore mobile la correzione differenziale per il posizionamento in tempo reale); con la disattivazione della S/A invece un’incertezza analoga o di poco superiore (comunque entro i cinque metri) è conseguibile con l’impiego in modalità navigazionale di un singolo ricevitore posto sul veicolo mobile.

LA SPERIMENTAZIONE
La ricerca, effettuata nell’ambito del progetto nazionale Colin99, riguarda lo studio delle potenzialità del GPS in ambito GIS, con particolare riferimento ai problemi connessi con l’acquisizione, la trasmissione e la gestione di dati relativi a veicoli in movimento. A tale proposito è stata stipulata una convenzione tra il Dipartimento di Rappresentazione e l’AMAT (Azienda Municipalizzata di AutoTrasporto) di Palermo avente per oggetto la progettazione e la sperimentazione di un sistema informativo finalizzato alla gestione di autoveicoli in ambiente urbano. La sperimentazione è stata effettuata su due tipologie diverse di vetture. La prima (fig.1) è stata scelta fra i veicoli aziendali che percorrono itinerari prestabiliti (autobus); la seconda (fig.2), nell’ambito di veicoli che percorrono invece itinerari individuati di volta in volta dalla centrale operativa a seconda delle esigenze specifiche. Entrambe le vetture sono state attrezzate con la strumentazione necessaria per l’acquisizione dei dati di posizione, la loro memorizzazione ed elaborazione e la loro trasmissione alla stazione di controllo.
L'ACQUISIZIONE DEI DATI

L'acquisizione dei dati di posizione è stata realizzata impiegando un ricevitore LEICA GS5 in singola frequenza e 12 canali con antenna integrata, progettato appositamente per l'acquisizione territoriale in ambito GIS e fissato al tetto dell'autoveicolo mediante un attacco magnetico appositamente progettato (fig.3). I dati GPS vengono forniti dal ricevitore/antenna nel formato internazionale NMEA (National Marine Electronics Association) (fig.4), vengono trasmessi al PC tramite collegamento seriale e da questo elaborati con l'impiego del software ArcView Tracking Analyst che permette il posizionamento e la gestione in tempo reale di oggetti in movimento.

ELABORAZIONE DEI DATI

Per la individuazione sulla cartografia della posizione del veicolo mobile è stato utilizzato un software realizzato in ambiente Arcview in grado di trasformare in tempo reale le coordinate geografiche fornite dal ricevitore (espresse nel sistema WGS84) in coordinate piane (UTM-WGS84) nelle quali erano state precedentemente convertite anche le coordinate cartografiche (espresse originariamente nel sistema Gauss-Boaga).

ArcView consente di visualizzare contemporaneamente due finestre (fig.5). Nella prima è riportata la visione d'insieme della traiettoria del veicolo sovrapposta alla cartografia; nella seconda, in dettaglio le singole posizioni del ricevitore. Per la localizzazione dei tracciati degli autoveicoli è stata utilizzata anche l'ortofotocarta digitale a colori del centro storico di Palermo alla scala 1:500 (fig.6), realizzata recentemente per conto del Centro Regionale del Catalogo. Anche in questo caso è stato necessario realizzare un software per la trasformazione del sistema di riferimento locale X, Y in quello UTM-WGS84 (fig.7). I dati di posizione possono essere trasmessi in tempo reale alla stazione di controllo tramite il sistema radio di bordo oppure mediante GSM (fig.8). Nel nostro caso i dati, organizzati secondo pacchetti di "dimensioni" prestabiliti, sono stati inviati via Internet. I dati possono essere gestiti anche in tempo reale con l'impiego di un software adeguato (fig.9). Ad esempio, può essere determinato il tempo di attesa DT in corrispondenza di una fermata (fig.10). L'informazione relativa a tale tempo può essere poi visualizzata sul display di una "palina informativa telematica" disposta nei pressi della fermata (fig.11). Nell'attuale configurazione, la palina informativa svolge, nell'ambito del sistema di gestione del mezzo di trasporto, un ruolo passivo consistente nelle seguenti funzioni:

- visualizzare per l'utente i messaggi che la Centrale Operativa invia alla palina stessa. I messaggi di questo tipo sono "mirati", nel senso che soltanto la palina con quell'indirizzo radio visualizzerà il messaggio inviato dalla Centrale Operativa;
- rielaborare la previsione di arrivo. Quando la vettura arriva nei pressi della palina, i due links a corto raggio (MRL), contenuti nel bus e nella palina informativa, si mettono in comunicazione tra di loro; la vettura invia una stringa di riconoscimento alla palina che rielabora la previsione di arrivo della vettura stessa.
TEST E VERIFICHE

La verifica della ripetibilità dei tracciati è stata effettuata mediante il confronto (con il metodo del buffer, tecnica tipica dei GIS) tra le traiettorie del veicolo ottenute nelle stesse condizioni (fig.12). Come si può notare, tutti i punti considerati risultano contenuti nella fascia di ampiezza ± 4m.

Per quanto riguarda poi il controllo della precisione nel posizionamento assoluto, la sovrapposizione alla cartografia consente già un primo esame qualitativo. Una valutazione quantitativa è possibile invece confrontando il posizionamento del veicolo ottenuto in modalità navigazionale con quello determinato con il metodo cinematico differenziale (fig.13) con riferimento ad una stazione GPS fissa. La verifica è stata effettuata con l’impiego di due ricevitori Javad mod. Legacy-H GD/GG dei quali uno posizionato sul vertice di coordinate note ubicato sulla terrazza del Dipartimento (fig.14), l’altro sull’autoveicolo ad una distanza nota dal GSS.

CONCLUSIONI

La sperimentazione effettuata ha confermato le potenzialità dell’impiego del GPS per la localizzazione di veicoli in movimento. L’incertezza nel posizionamento in modalità navigazionale, come del resto era prevedibile per effetto della rimozione della S/A, è inferiore ai cinque metri, limite questo del tutto accettabile in questo tipo di problematiche.

Nelle zone di ricezione critica del segnale GPS il problema del posizionamento del veicolo può essere risolto con l’impiego di altri sistemi integrativi (come, ad esempio, la bussola elettronica e l’odometro). Oppure si potrebbe ricorrere ad un sensore georeferenzizzato collocato, ad esempio, sulla palina telematica della fermata del bus. In questo caso la palina, a differenza di quanto visto in precedenza, svolgerebbe un ruolo attivo consentendo la ricalibrazione del sistema di localizzazione a bordo, tramite un impulso inviato nella direzione del veicolo che passa in corrispondenza di essa. Attualmente è in fase di studio la possibilità di integrare i dati di posizione con dati di altra natura, relativi, ad esempio, a parametri ambientali (come temperatura, umidità, inquinamento acustico e atmosferico ecc.) nell’ambito di un sistema informativo territoriale di grande utilità per la gestione di un sistema di trasporti urbano.

Ringraziamenti

> AMAT di Palermo, ed in particolare l’ing. Cesare La Plana, l’ing. Domenico Caminiti e l’ing. Ferdinando Carillo, per la collaborazione in tutte le fasi operative della ricerca
> Leica Geosystem, per aver messo a disposizione il ricevitore GSS
> arch. Giuseppe Mandalari, per l’assistenza nelle operazioni di rilievo

Vincenzo Franco
Mauro Lo Brutto
Pietro Orlando
Benedetto Villa
Dipartimento di Rappresentazione - Università di Palermo
bevilla@unipa.it