Topografia in qualità

- Le Ferrovie dello Stato hanno sempre avuto, all'interno delle attività di ingegneria ferroviaria, una particolare attenzione per le operazioni topografiche. Sia le loro disposizioni che le attività sperimentali nel campo topografico hanno costituito un riferimento fondamentale per chiunque facesse topografia di campagna.

All'inizio dell'attuazione del progetto Alta Velocità, ITALFERR ha dovuto risolvere una dupla esigenza: — da un lato, disporre di prescrizioni univoche per un'opera che attraverserà quasi l'intero territorio nazionale, da realizzare in tempi brevi con la contemporanea attività di numerosi operatori — diversi per estrazione, formazione e strumentazione; — dall'altro, recepire le specifiche topografiche F.S., aggiornare e integrare le stesse in riferimento alle nuove strumentazioni ed alle peculiarità dell'Alta Velocità, tenendo presente che l'ambito di applicazione di queste specifiche si sarebbe esteso dalle operazioni di progetto a quelle di tracciamento, a quelle orientate alla realizzazione di una cartografia numerica (finalizzata anche alla costruzione di un sistema informativo per l'archiviazione e la gestione del Sistema Alta Velocità), prestando una particolare attenzione alla coerenza complessiva delle specifiche "settoriali".

Nel 1991 viene quindi redatta la "Sezione V: prescrizioni per l'esecuzione dei rilievi e la compilazione delle cartografie" del Manuale di Progettazione ITALFERR SIS.T.A.V., integrata successivamente per le parti di rilievo di dettaglio e per il tracciamento da appositi capitoli del Capitolo "Costruzione delle Opere Civili" (sez. II).

L'atteggiamento generale con cui si è proceduto alla stesura di questi documenti è stato giustamente improntato alla cautela, nel senso di acquisire solo le procedure e le strumentazioni sufficientemente sperimentate e di non determinare equilibri nel complesso meccanismo delle gare.

Inizialmente, per quanto riguarda il rilievo, vengono recepite le innovazioni (procedure topografiche, tolleranze) che discendono dall'introduzione delle stazioni totali (o dell'accoppiata di teodoliti e distanziometri); la cautela prima richiamata consiglia di non introdurre immediatamente né apparati GPS né livelli elettronici ma di svolgere una approfondita analisi sperimentale sulle loro prestazioni per definirne i possibili campi di applicazione e le procedure soddisfacenti ai fini di SIS.T.A.V.

Per introdurre l'uso di questi nuovi strumenti nelle attività topografiche man mano in via di realizzazione si sono seguite due vie: — il ricorso alla concessione di "deroghe" alle prescrizioni del Manuale di Progettazione (questa via è stata utilizzata per i livelli elettronici e per i "giorinali di restituzione" fotogrammetrica); — l'approntamento di procedure di qualità (via seguita in particolare per l'uso dei GPS).

Quest'ultima soluzione è quella che vale la pena presentare più in dettaglio in quanto fortemente innovativa, di per sé, del modo complessivo di fare topografia.

La procedura di qualità deriva da disposizioni internazionali (inizialmente giapponesi, anni '60; norme UNI EN serie 29000, 1987) ed è volta ad assicurare la qualità di un prodotto seguendo la realizzazione dalle fasi iniziali lungo l'intero processo di "fabbricazione" fino alla effettiva fruibilità. Il Sistema Qualità nasce inizialmente per le produzioni industriali, ma l'applicazione della procedura si estende man mano anche al campo delle opere civili e dei servizi. Esso si configura come un modo diverso di pensare il ciclo di produzione di un prodotto.

Il Sistema Qualità presenta una serie di vantaggi che superano ampiamente i "disagi" che discendono dalla sua applicazione. Poiché sia il Committecente che la ditta esecutrice (che, in molti casi, anche i rappresentanti degli utenti o dei consumatori) interagiscono durante tutto l'iter di realizzazione del prodotto, i contenziosi vengono automaticamente a ridursi. Analogamente la fase del classico collaudo perde molto di importanza e si restringe ad un controllo campionario sul prodotto finito.

La procedura è stata concretizzata nel corso di attività topografiche riguardanti l'Alta Velocità secondo questo schema:

Fase 1
Una volta ricevuto l'incarico, la Ditta Conferitoria stilà un "Piano della Qualità" generale riferito all'operazione da effettuare. Esso deve definire:
- l'oggetto dell'attività;
- la documentazione di input per lo svolgimento dell'attività: riferimenti contrattuali e altri documenti generali di riferimento (norme, specifiche, vertici ufficiali da utilizzare, altra documentazione predisposta dal Committecente);
- la documentazione di output;
- la documentazione certificativa della qualità e la modulistica di riferimento;
- la segnalazione di specifici contenuti dei documenti contrattuali non applicabili e la proposta delle rispettive deroghe e/o delle integrazioni alle procedure o strumentazioni già definite negli altri documenti;
- l'elenco delle procedure contrattuali applicabili per lo svolgimento delle attività con i relativi riferimenti;
- le metodologie di riferimento e le procedure operative, sempre riferendosi ai documenti contrattuali;
- l'organigramma funzionale tipologico per lo svolgimento della attività (Responsabile della Topografia, capo squadra, ecc...);
- i Piani di Controllo Qualità tipologici per singola attività e, parallellamente, le schede Operative necessarie (libretti di campagna, monografie, giornale delle attività, ecc...);
- i metodi di taratura e di certificazione degli strumenti di messa e di calcolo;
- le procedure di interfaccia con le altre strutture/uffici interessati all'utilizzo dei risultati delle attività (progettisti, ecc...);
- le modalità di gestione delle Non Conformità (ciclo delle attività effettuate e riscontrate come non rispondenti ai documenti contrattuali e al Piano della Qualità);
- la modalità di gestione della documentazione di input, di output e certificativa;
- il flusso della documentazione e l'iter approvativo per il Committecente.
Fase 2
Il Committente a sua volta definisce un gruppo di Alta Sorveglianza, formato di solito da esperti interni ed esterni, che svolge comunque il suo lavoro "super-parts" nel senso che le sue iniziative, indicazioni e decisioni sono finalizzate ad assicurare il livello più alto possibile di qualità del prodotto; ai risultati della sua attività debbono conformarsi tutte le varie parti.

Il gruppo di A.S. esamina il Piano della Qualità e in collaborazione con Committente e Conferitorio lo migliora integrandolo, correggendolo e rendendolo omogeneo e coerente sia al suo interno sia con i documenti fondativi (Manuale di Progettazione, ecc.).

Ad esempio, per la realizzazione delle reti topografiche di inquadramento e raffinamento della tratta A.V. Firenze-Bologna, in questa fase sono state definite nuove tolleranze per l'uso delle stazioni totali, il tipo di GPS accettato e le modalità per il corretto uso degli apparati satellitari.

Fase 3
Quando si è raggiunta una formulazione del Piano della Qualità soddisfacente per tutte le parti, esso viene sottoscritto dalle parti stesse e va ad integrare i documenti contrattuali (in un certo senso diventa il documento contrattuale principale).

Fase 4
Il conferitorio definisce, per ogni attività da svolgere:
- lo scopo del lavoro (rilievo di tipo.............. del sito............);
- le procedure che intende seguire;
- il calendario e i luoghi progressivi di attività (il gruppo di A.S. deve poter sempre rintracciare i vari operatori);
- la definizione delle squadre (nominativi del personale, qualifica, curricula; non possono svolgere quel la determinata attività altre persone se non quelle certificate; si può deve prevedere "la riserva");
- identificazione degli strumenti e delle attrezzature che saranno utilizzati (modello, matricola, in dotazione alla squadra n°........, certificato di taratura);

- eventuali software per l'elaborazione dei dati;
- modalità e luogo di conservazione dei documenti prodotti (monografie, giornale delle attività, listati, ecc...).

Fase 5
A questo punto inizia (finalmente) la fase vera e propria dei lavori.
Durante i lavori l'A.S. interviene o "motu proprio" per verificare campionariamente l'effettiva rispondenza delle attività ai documenti contrattuali oppure "su chiamata", in particolare quando situazioni non previste o molto particolarmente richiedono una ulteriore definizione delle modalità di lavoro (o la "vera interpretazione" dei documenti contrattuali) in modo da risolvere i problemi in "tempo reale".
L'ottica resta quindi non quella di un controllo ma quella di arrivare il più rapidamente possibile ad un prodotto di qualità. In questo senso se l'A.S. riscontra che vengono seguite procedure disformi da quelle concordate redige un verbale di non conformità. Se la non conformità è di tipo "lieve" essa viene registrata e "sanata", cioè superata, senza altre questioni (uno strumento un po' fuori rettifica, una distanza alquanto eccessiva, ecc.) e, se del caso, tenuta presente nella elaborazione dei dati e nella determinazione della loro affidabilità. Se la non conformità è invece di tipo grave (personale non qualificato o non in regola, subappalto, dati insufficienti, strumentazione impropria) si può arrivare alla ripetizione delle attività svolte, alla applicazione di penali, alla rescissione del contratto.

Fase 6
Corrisponde al classico collaudo. Tuttavia essa è, in una certa misura, opzionale; consiste in poche sessioni di rilievo (e/o di calcolo) effettuate di solito con procedure differenti da quelle utilizzate in fase di esecuzione per riscontrare che la qualità del lavoro concluso sia effettivamente rispondente alle attese (scarti quadrafatici medi, permanenza dei vertici di inquadramento e raffinamento, fedeltà delle rappresentazioni,...).
Nell’ambito del Progetto Alta Velocità si è avuto modo di lavorare sia in siste-
ma tradizionale (per i collaudi della
cartografia di alcune tratte) che in siste-
ma di qualità (per le reti piano-altimet-
triche della Firenze-Bologna e per il
tracciamento della Roma-Napoli): è pos-
sibile quindi effettuare un raffronto fra i
due sistemi di lavoro. Raffronto che si
conclude nettamente a favore del siste-
ma di qualità. Infatti:

a) esso permette di esaminare e discu-
tere i documenti contrattuali preventivi-
mente fra tutte le parti operando tutti i
chiaramenti necessari, gli adeguamenti
rispondenti alle alleanze strumentazione (e
professionali degli operatori, il riferi-
tamento delle norme generali al caso par-
ticolare e concreto da affrontare;

b) dopo un breve periodo iniziale “im-
paccato” (l’A.S. viene percepita come il
controllore) si instaura di solito un posi-
tivo rapporto tra professionisti che met-
tono su un tavolo comune le loro capita-
cità per definire le migliori strategie e le
operatività più idonee per condurre a
buon fine l’incarico;

c) si determina un arretramento pro-
fessionale e scientifico fra tutte le parti
coinvolte (si recupera anche il gusto del-
la sperimentazione, pur nell’ambito ri-
stretto del commessa);

d) la presenza dell’A.S. non determi-
nó (di solito) un rallentamento delle ope-
razioni di campagna o di elaborazione;

e) il tempo impiegato nella fase ini-
ziale di definizione del Piano della Qua-
lità e dei Piani di Controllo Qualità è
ampiamente recuperato dalla riduzione
delle operazioni di collaudo (in pratica
il lavoro è collaudato nel momento ste-
osso, o poco dopo, della sua conclusione).

Vale la pena sottolineare ancora una
volta che il fattore importante è l’acquisizione
di una mentalità nuova di lavorare, dialogativa e incrementale (si
possono superare i problemi che si ri-
scontrano con il contributo delle diverse
parti, i problemi sono spesso nuovi, gli
strumenti ed i modi per risolverli sono
in costante evoluzione); all’interno del Si-
istema di qualità gli standard prestazio-
nali, le strumentazioni e le procedure
topografiche tornano ad essere mezzi per
assicurare il miglior risultato possibile e
non più “tutem” intoccabili. Essi cioè,
come è giusto che sia, vengono riconnessi
alle finalità del lavoro ed alle aspettative
prestazionali del prodotto realizzato.

Un buon Piano di Qualità può tutta-
via prendere le mosse solo da un valido
documento di riferimento (in questo caso
il Manuale di Progettazione) che definii-
sce con chiarezza finalità, standard, pro-
cedure, strumentazioni, codici e quant’al-
tro: documento da confermare, aggiornare,
integrale, ma che innanzitutto deve esistere.

Auscipando gli estendersi di questa mo-
dalità di lavoro, va quindi ribadita l’ur-
genza della redazione di norme e standard
di riferimento per le diverse
opere ed i diversi prodotti topografici: e
che siano standard dinamici (cioè
aggiornabili e integrabili).

Se è possibile che, sulla base delle
esperienze fatte nelle diverse sedi, que-
ste norme e questi standard possano ve-
dere la luce “a breve” per diversi tipi di
strumenti così come per diverse proce-
dure e per diversi prodotti dell’attività
topografica, due sembrano a nostro av-
viso gli ambiti disciplinari su cui soffermare l’attenzione nella prospettiva
de elaborare riferimenti disciplinari e
professionali validi:

1) la possibilità di effettuare attività
topografiche con “tecniche miste”, ovve-
ro con l’uso contestuale di strumenta-
zioni differenti (GPS e stazioni totali; sta-
tazioni totali e livelli), garantendo la coe-
renza interna del prodotto e la analoga
attendibilità di risultati;

2) la produzione di cartografia a me-
dia e grande scala (e di quella numerica,
in particolare se orientata alla costruzi-
one di sistemi informativi).

In questi ambiti a nostro giudizio
molta strada è ancora da percorrere (or-
se ancora da intraprendere). E vela la
pena aprire il dibattito e la riflessione,
comuni sia agli operatori che agli altri
soggetti interessati, nelle diverse sedi
possibili a cominciare da questa, parten-
do da contributi ed esperienze concrete.

Aldo Riggio

Biografia dell’autore
Aldo Riggio, nato a Roma nel 1950; laureato in
Ingegneria Civile Trasporti, Dottore di Ricerca in
Pianificazione Territoriale; docente a ruolo per l’in-
segnamento di Topografia e Fotogrammetria pres-
so T.T.C.G. "Vantelli" di Roma; docente a contratto per l’insegnamento di Cartografia per l’urbanistica
presso la Scuola di Specializzazione in Tecnica Ur-
banistica applicata alle Aree Metropolitane, colla-
bora stabilmente con il Dipartimento di Architettu-
ra Tecnica e Tecnica Urbanistica dell’Università la
Sapienza di Roma in qualità di esperto sia per la
didattica che per la ricerca; membro del Working
Group of Urbanization italiano di HABITATION; consulente di TPL, AW per la topografia e la carto-
grafia; svolge attività professionale quasi esclusiva-
mente nei campi della topografia/cartografia e del-
urbanistica; autore di diverse pubblicazioni sulla
pianificazione in situazioni di rischio e sull’impat-
to territoriale delle infrastrutture di trasporto.

segue dalla prima pagina ...

I lettori di GEOMedia

Geomedia si rivolge quindi, a professioni-
sti, fornitori, operatori, responsabili tecnici di
società private e della pubblica amministra-
zione, ordinari professionali e associazioni di
categoria, formatori e studenti, che indistin-
tamente abbiano necessità di una informazio-
ne professionale e puntuale sugli strumenti,
sulle metodologie, sugli avanzamenti tecnolo-
gici e normativi nell’ambito settore delle scien-
ze della terra e della gestione del territorio.

I contenuti

Geomedia è uno strumento informativo, ele-
mento di collegamento tra il mondo della ric-
ca applicata, quello operativo dell’utente finale
è il mercato dell’offerta strumentale e tecnolo-
gica. La newsletter darà un’informazione di
qualità sia sul mondo professionale italiano,
sia attraverso alcune specifiche rubriche sullo
stato dell’arte a livello internazionale, con par-
ticolare riferimento all’Europa. Geomedia sarà
una newsletter a tema, curata attraverso la se-
lezione di articoli, interviste, recensioni tecni-
che, presentazione di prodotti e servizi. Saran-
no gestite delle rubriche fisse sugli aspetti pro-
fessionali e tecnologici preminenti per chi si
occupa di cartografia, fotogrammetria, cattasto,
ingegneria del territorio, topografia, geodesia,
rilevi idrografici e minerari, GIS, sistemi
satellitari e telerilevamento, normative nazio-
nali ed europee.

Questo numero

Questo primo numero di Geomedia vede la
luce alla vigilia di un evento importante
come la conferenza di Parma, che dovrebbe
rappresentare una sorta di convergenza di in-
tenti tra le più importanti associazioni scienti-
fiche del settore.

Il tema ufficiale di questo primo numero è
STANDARD TOPOGRAFICI e GPS, che pe-
raloro con le difficoltà di realizzazione del pri-
mo numero di un così ambizioso progetto, non
si è potuto esprimere nella vivacità e profon-
dità che un tema così complesso imponeva.
Trovavano inoltre in questo numero numerosi
articoli, notizie, report sullo stato dell’arte nel
settore dei GIS, del GPS, e ovviamente le co-
municazioni dalle aziende leader che offrono
ele soluzioni pratiche all’innovazione tecnologica.
Una menzione specifica meritano gli inseriti sul
GPS e sui GIS che pensiamo dervavere le tec-
nologie primarie nel mondo del digitale del pro-
simo millennio.

Un augurio e un ringraziamento ai nostri
futuri lettori, e a quanti hanno contribuito al
progetto dando il loro significativo contributo
supporto all’iniziativa, uno speciale ringra-
ziamento va fatto al comitato tecnico-direttivo
senza il quale questo numero non sarebbe
andato in porto. Non ci rimane altro quindi
che augurarvi una buona e proficua lettura.

Domenico Santariero